0% Complete
فارسی
Home
/
دومین سمپوزیوم منطقه ای نوآوری در علم و فناوری
پتانسیل یابی آب زیرزمینی کارستی با استفاده از مدل یادگیری ماشین
Authors :
حسین محمد زاده
1
جعفر هاشمی
2
حمید قالیباف محمد آبادی
3
1- دانشکده علوم دانشگاه فردوسی مشهد
2- دانشکده علوم دانشگاه فردوسی مشهد
3- دانشکده علوم دانشگاه فردوسی مشهد
Keywords :
Machine learning،Karst،groundwater Potential،Random Forest،Hezar Masjed
Abstract :
The objective of this paper is to present a groundwater potential zoning map for the Hezar Masjid highlands, located northeast of Mashhad, using the Random Forest (RF) machine learning model. The zoning map was developed based on the locations of 1,438 springs in the area and 16 factors influencing groundwater potential. The model's performance was assessed using various statistical criteria, including the area under the receiver operating characteristic (ROC) curve (AUC = 0.93), indicating excellent accuracy
Papers List
List of archived papers
Electrospinning in cardiac tissue engineering
Haniye Ghanadghorsi - Zeinab Neshati
A new insight of skin organoids
Milad Rezaei - Fatemeh Jameie - Roya Lari
Permits for development and operation of unmanned and autonomous equipment
Mohammad hossein MoghimiEsfandabadi - Kamyab Karbasishargh - Ali Esmaeili
Engineering Geology of Holy Karbala City
Naser Hafezi Moghaddas - Hammed Ghorbanpour
Study of CO and NO Adsorption Energy on Catalytic Converter
Somayyeh Veiskarami - Ali Nakheai Pour - Ali Mohammadi - Hossein Amini Mashhadi
Effect of Smart Water Meters (SWM)' Installation on Water Table Fluctuations in the Roshtkhar Plain
Hossein Mohammadzadeh - Mahdi Torshizi
The feasibility of automated gemstones identification using optical properties and Artificial Intelligence (AI)
Morteza Razmara
Targeted Identification of biopolymer sphingan producers: RAPD-PCR analysis and the development of degenerate PCR primers
Monir-sadat Shakeri
Investigation of the effect of electrolyte type in the anodizing process of titanium
Nazanin Yazdanparast - ّFaezeh Darvishian Haghighi
Investigating Effects of sinusoidal leading edge on a lambda-wing UAV at pre-stall angles
Amir Hosseinikargar - Mohammad Hassan Djavareshkian - Amir Hossein Gholami
more
Samin Hamayesh - Version 42.7.0