0% Complete
English
صفحه اصلی
/
دومین سمپوزیوم منطقه ای نوآوری در علم و فناوری
Combining Machine Learning and Nanobiosensors for Improving Lung Cancer Detection
نویسندگان :
Shakiba Nazemian
1
Soheil Sadr
2
Ashkan Hajjafari
3
Khashayar Hajjafari
4
Abbas Rahdar
5
Mahdis Khajehmohammadi
6
Hassan Borji
7
1- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mas
2- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
3- Department of Pathobiology, Faculty of Veterinary Specialized Science, Science, and Research Branch, Islamic Azad University, Tehran, Iran
4- Medical Doctor, Shahid Bahonar University of Kerman, Kerman, Iran
5- Department of Physics, University of Zabol, Zabol, Iran
6- Department of Basic Sciences, Faculty of Veterinary Medicine, Baft branch, Islamic Azad University, Baft, Iran
7- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
کلمات کلیدی :
Lung cancer،Nanotechnology،Nanobiosensors،Artificial intelligence
چکیده :
Abstract- Lung cancer is one of the most prevalent types of cancer in the world, and its clinical prognosis and early detection are of great importance. With recent advances in artificial intelligence and nanotechnology, combining machine learning (ML) and nanobiosensors has been considered a novel approach for diagnosing and monitoring lung cancer. Hence, the current review aims to examine the combination of these two technologies for lung cancer diagnosis and explores its potential and challenges. ML can identify patterns associated with lung cancer with its capabilities in processing complex data and simulating predictive models. Nanobiosensors, on the other hand, can detect biological changes at the molecular and cellular levels with high sensitivity. These two technologies allow for more accurate, faster, and non-invasive lung cancer diagnosis. In addition, using these two technologies simultaneously could help identify more advanced changes in the disease, even before clinical symptoms become apparent. In conclusion, combining machine learning and nanobiosensors offers a novel and efficient approach to lung cancer diagnosis that can significantly increase the accuracy of diagnosis and prognosis.
لیست مقالات
لیست مقالات بایگانی شده
کاربرد چارچوب های فلزی-آلی (MOF) در زیست پزشکی و مهندسی بافت
سارا زمانی - زینب نشاطی
Mineralization Potential of Afghanistan Pegmatite Belt
Hamidullah Arian - Zahra Alaminia - Azizullah Haydari - Arif Nero - Akram Shirzad
A Whole-cell amperometric biosensor based on green microalgal enzyme for water pollution monitoring
Sima Iravani - Hossein Ahmadzadeh - Halimeh-sadat Sajjadizadeh - Gholamhossein Rounaghi
Dosimetric impact of inter-fraction changes of OARs during intensity-modulated radiation treatment of prostate cancer patients
Mahdieh Dayyani - Laleh Rafat-Motavalli - Elie Hoseinian-Azghadi - Niloofar Rafat-Motavalli - Hashem Miri-Hakimabad
Numerical study of aero-optical effects at transonic regime around the Tomahawk cruise missile optical system
Mahyar Najafian - Ali Esmaeili - Kamyab Karbasishargh
Monte Carlo modelling of Siemens Artiste linac head and the 160 MLC and assessment of dose maps for IMRT and 3D-CRT plans
Hashem Miri-Hakimabad - Elie Hoseinian-Azghadi - Laleh Rafat-Motavalli - Taylan Tuğrul - Niloofar Rafat-Motavalli - Vida Khodabandeh-Baygi - Mahdieh Dayyani
Compensation of Phase Error Using Efficient Hydrophone Array Arrangement in Synthetic Aperture Sonar
HAMID HAJIRAHIMI KASHANI - HOOMAN AFSHARI RAD - SEYED ALIREZA SEYEDIN
Hydrogeochemistry Evolution of Water Resources in Dargaz Plain
Hossein Mohammadzadeh - Fateme Fanoodi
Effects of Artificial Intelligence on Production
Amir ehsan Zahedi - Mahdiyeh Haghighat
تشخیص فعالیت ماهیگیری تاریک با استفاده از تصاویر رادار روزنه مصنوعی (SAR) و با استفاده از برجستگی
سیدسجاد شمسی زاده - هومن افشاریراد - سیدعلیرضا سیدین
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.7.0