0% Complete
صفحه اصلی
/
دومین سمپوزیوم منطقه ای نوآوری در علم و فناوری
Combining Machine Learning and Nanobiosensors for Improving Lung Cancer Detection
نویسندگان :
Shakiba Nazemian
1
Soheil Sadr
2
Ashkan Hajjafari
3
Khashayar Hajjafari
4
Abbas Rahdar
5
Mahdis Khajehmohammadi
6
Hassan Borji
7
1- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mas
2- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
3- Department of Pathobiology, Faculty of Veterinary Specialized Science, Science, and Research Branch, Islamic Azad University, Tehran, Iran
4- Medical Doctor, Shahid Bahonar University of Kerman, Kerman, Iran
5- Department of Physics, University of Zabol, Zabol, Iran
6- Department of Basic Sciences, Faculty of Veterinary Medicine, Baft branch, Islamic Azad University, Baft, Iran
7- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
کلمات کلیدی :
Lung cancer،Nanotechnology،Nanobiosensors،Artificial intelligence
چکیده :
Abstract- Lung cancer is one of the most prevalent types of cancer in the world, and its clinical prognosis and early detection are of great importance. With recent advances in artificial intelligence and nanotechnology, combining machine learning (ML) and nanobiosensors has been considered a novel approach for diagnosing and monitoring lung cancer. Hence, the current review aims to examine the combination of these two technologies for lung cancer diagnosis and explores its potential and challenges. ML can identify patterns associated with lung cancer with its capabilities in processing complex data and simulating predictive models. Nanobiosensors, on the other hand, can detect biological changes at the molecular and cellular levels with high sensitivity. These two technologies allow for more accurate, faster, and non-invasive lung cancer diagnosis. In addition, using these two technologies simultaneously could help identify more advanced changes in the disease, even before clinical symptoms become apparent. In conclusion, combining machine learning and nanobiosensors offers a novel and efficient approach to lung cancer diagnosis that can significantly increase the accuracy of diagnosis and prognosis.
لیست مقالات
لیست مقالات بایگانی شده
Hardware Implementation of the DVI Protocol for Displaying Neural Network and Image Processing Outputs on FPGA ML605
Saeed Yazdani - Danial Bayati - Sara Ershadinasab
Design of DNA Origami-Heparin Nanostructures for the Development of Viral Therapies
Sadegh Dastorani - Mahmoud Shariati - Reza Hasanzadeh Ghasemi
Improving Attack Detection Accuracy in Goose Protocol Networks in Smart Grids Using Random Forest Algorithm
Mohsen Attari - Seyed reza Kamel - Reza Sheibani
Rapid detection of Enterococcus faecalis using extrinsic fluorescence
Abolfazl Zanghaei - Ali Ameri - Vahid Soheili - Ali Hashemi - Saeed Karima - Hossein Ghanbarian - Kiarash Ghazvini
Control strategy based on a maximum power point tracking control or a constant power generation control
Mohammad reza Mohammadiyan asiabar
Monte Carlo modelling of Siemens Artiste linac head and the 160 MLC and assessment of dose maps for IMRT and 3D-CRT plans
Hashem Miri-Hakimabad - Elie Hoseinian-Azghadi - Laleh Rafat-Motavalli - Taylan Tuğrul - Niloofar Rafat-Motavalli - Vida Khodabandeh-Baygi - Mahdieh Dayyani
Estimating the density of littered waste in urban environment (case study: Ardakan city)
Sanaz Rahimihezarvand - Maryam Morovati - Javad Torkashvand
چالشها و تهدیدات امنیتی در باتریهای لیتیوم-یونی و راهکارهای مقابله با آن (نقش آن در انفجار پیجرهای در لبنان)
عباس قائمی بافقی - بی بی مرضیه رضوان پناه
Classification of Non-Alcoholic Fatty Liver Disease Using Ultrasound Imaging and Deep Texture Representation
ALI FAROOGHI
Investigating the Application of Nanomedicines in Improving the Hydatid Cysts Treatment
Hassan Borji - Soheil Sadr - Shakiba Nazemian - Cinzia Santucciu - Abbas Rahdar - Sadanad Pandey
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 41.3.1