0% Complete
English
صفحه اصلی
/
دومین سمپوزیوم منطقه ای نوآوری در علم و فناوری
Combining Machine Learning and Nanobiosensors for Improving Lung Cancer Detection
نویسندگان :
Shakiba Nazemian
1
Soheil Sadr
2
Ashkan Hajjafari
3
Khashayar Hajjafari
4
Abbas Rahdar
5
Mahdis Khajehmohammadi
6
Hassan Borji
7
1- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mas
2- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
3- Department of Pathobiology, Faculty of Veterinary Specialized Science, Science, and Research Branch, Islamic Azad University, Tehran, Iran
4- Medical Doctor, Shahid Bahonar University of Kerman, Kerman, Iran
5- Department of Physics, University of Zabol, Zabol, Iran
6- Department of Basic Sciences, Faculty of Veterinary Medicine, Baft branch, Islamic Azad University, Baft, Iran
7- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
کلمات کلیدی :
Lung cancer،Nanotechnology،Nanobiosensors،Artificial intelligence
چکیده :
Abstract- Lung cancer is one of the most prevalent types of cancer in the world, and its clinical prognosis and early detection are of great importance. With recent advances in artificial intelligence and nanotechnology, combining machine learning (ML) and nanobiosensors has been considered a novel approach for diagnosing and monitoring lung cancer. Hence, the current review aims to examine the combination of these two technologies for lung cancer diagnosis and explores its potential and challenges. ML can identify patterns associated with lung cancer with its capabilities in processing complex data and simulating predictive models. Nanobiosensors, on the other hand, can detect biological changes at the molecular and cellular levels with high sensitivity. These two technologies allow for more accurate, faster, and non-invasive lung cancer diagnosis. In addition, using these two technologies simultaneously could help identify more advanced changes in the disease, even before clinical symptoms become apparent. In conclusion, combining machine learning and nanobiosensors offers a novel and efficient approach to lung cancer diagnosis that can significantly increase the accuracy of diagnosis and prognosis.
لیست مقالات
لیست مقالات بایگانی شده
Increasing resource allocation performance in DRL-based mobile edge calculations
Afshin Golchin - Vahid Sattari Naini
Patching methods of cardiac patches for treatment of myocardial infarction
Elham Sadat Rahimi - Zeinab Neshati
Numerical study of aero-optical effects at hypersonic regime around the optical sensor of a projectile
Kamyab Karbasishargh - Mahmoud Pasandidehfard - Ali Esmaeili
Integration of High-Definition simultaneous EEG and fNIRS recording system
Mojtaba Pourdara - Mostafa Khavanin Zadeh - Javad Safaie
Human Health Risk Assessment of polluted Soils in Northwest of Gonabad City, NE-Iran
Mohammad Hosein Mahmudy Gharaie - Masoumeh Taheri
رسانندگی دینامیکی طولی گاز الکترونی دو بعدی مغناطیسی با جفت شدگی اسپین-مدار راشبا در حضور برهمکنش الکترون-الکترون
مسلم میر
Phage display technology as a tool for vaccine development
Gholamreza Hashemi Tabar - Patrick Carnegie
Improving the accuracy of intrusion detection systems by optimizing random forest algorithm parameters using genetic algorithm
Mahdi Karimi - Mohammad mahdi Shirmohammadi - Saeedreza Alikhani
استفاده از نانومواد رسانای الکتریکی در مهندسی بافت قلب
زینب نشاطی - حانیه دوستی
A Whole-cell amperometric biosensor based on green microalgal enzyme for water pollution monitoring
Sima Iravani - Hossein Ahmadzadeh - Halimeh-sadat Sajjadizadeh - Gholamhossein Rounaghi
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.7.0