0% Complete
فارسی
Home
/
دومین سمپوزیوم منطقه ای نوآوری در علم و فناوری
Combining Machine Learning and Nanobiosensors for Improving Lung Cancer Detection
Authors :
Shakiba Nazemian
1
Soheil Sadr
2
Ashkan Hajjafari
3
Khashayar Hajjafari
4
Abbas Rahdar
5
Mahdis Khajehmohammadi
6
Hassan Borji
7
1- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mas
2- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
3- Department of Pathobiology, Faculty of Veterinary Specialized Science, Science, and Research Branch, Islamic Azad University, Tehran, Iran
4- Medical Doctor, Shahid Bahonar University of Kerman, Kerman, Iran
5- Department of Physics, University of Zabol, Zabol, Iran
6- Department of Basic Sciences, Faculty of Veterinary Medicine, Baft branch, Islamic Azad University, Baft, Iran
7- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
Keywords :
Lung cancer،Nanotechnology،Nanobiosensors،Artificial intelligence
Abstract :
Abstract- Lung cancer is one of the most prevalent types of cancer in the world, and its clinical prognosis and early detection are of great importance. With recent advances in artificial intelligence and nanotechnology, combining machine learning (ML) and nanobiosensors has been considered a novel approach for diagnosing and monitoring lung cancer. Hence, the current review aims to examine the combination of these two technologies for lung cancer diagnosis and explores its potential and challenges. ML can identify patterns associated with lung cancer with its capabilities in processing complex data and simulating predictive models. Nanobiosensors, on the other hand, can detect biological changes at the molecular and cellular levels with high sensitivity. These two technologies allow for more accurate, faster, and non-invasive lung cancer diagnosis. In addition, using these two technologies simultaneously could help identify more advanced changes in the disease, even before clinical symptoms become apparent. In conclusion, combining machine learning and nanobiosensors offers a novel and efficient approach to lung cancer diagnosis that can significantly increase the accuracy of diagnosis and prognosis.
Papers List
List of archived papers
Classification of Non-Alcoholic Fatty Liver Disease Using Ultrasound Imaging and Deep Texture Representation
ALI FAROOGHI
توسعه سنسور نرم با هدف تخمین ترکیب اجزاء کلیدی و توزیع PIONA در جریان نفتا با استفاده از روش بازسازی مولکولی MTHS
میثم وحیدی فردوسی - محمدعلی فنایی شیخ الاسلامی
کاربرد چارچوب های فلزی-آلی (MOF) در زیست پزشکی و مهندسی بافت
سارا زمانی - زینب نشاطی
تحدید جرعة کبریتات الألمنیوم المائیة اللازمة لإزالةCOD والمعادن الثقیلة من میاه نهر قویق عند مصب الدباغات تبعا لترکیز المیاه الخام
میس الورده
Permits for development and operation of unmanned and autonomous equipment
Mohammad hossein MoghimiEsfandabadi - Kamyab Karbasishargh - Ali Esmaeili
Engineering Geology of Holy Karbala City
Naser Hafezi Moghaddas - Hammed Ghorbanpour
Phage display technology as a tool for vaccine development
Gholamreza Hashemi Tabar - Patrick Carnegie
Numerical Optimization and Analysis of an Axial Pump
Mehdi Tayebi - Ali Esmaeili - Kamyab Karbasishargh
Synthesis and Characterization of CNT-TiO2 Nanocomposite Nanofluids for Enhanced Heat Transfer
Elahe Khosravifard - Masoud Salavati-Niasari
Patching methods of cardiac patches for treatment of myocardial infarction
Elham Sadat Rahimi - Zeinab Neshati
more
Samin Hamayesh - Version 42.7.0