0% Complete
فارسی
Home
/
دومین سمپوزیوم منطقه ای نوآوری در علم و فناوری
Combining Machine Learning and Nanobiosensors for Improving Lung Cancer Detection
Authors :
Shakiba Nazemian
1
Soheil Sadr
2
Ashkan Hajjafari
3
Khashayar Hajjafari
4
Abbas Rahdar
5
Mahdis Khajehmohammadi
6
Hassan Borji
7
1- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mas
2- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
3- Department of Pathobiology, Faculty of Veterinary Specialized Science, Science, and Research Branch, Islamic Azad University, Tehran, Iran
4- Medical Doctor, Shahid Bahonar University of Kerman, Kerman, Iran
5- Department of Physics, University of Zabol, Zabol, Iran
6- Department of Basic Sciences, Faculty of Veterinary Medicine, Baft branch, Islamic Azad University, Baft, Iran
7- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
Keywords :
Lung cancer،Nanotechnology،Nanobiosensors،Artificial intelligence
Abstract :
Abstract- Lung cancer is one of the most prevalent types of cancer in the world, and its clinical prognosis and early detection are of great importance. With recent advances in artificial intelligence and nanotechnology, combining machine learning (ML) and nanobiosensors has been considered a novel approach for diagnosing and monitoring lung cancer. Hence, the current review aims to examine the combination of these two technologies for lung cancer diagnosis and explores its potential and challenges. ML can identify patterns associated with lung cancer with its capabilities in processing complex data and simulating predictive models. Nanobiosensors, on the other hand, can detect biological changes at the molecular and cellular levels with high sensitivity. These two technologies allow for more accurate, faster, and non-invasive lung cancer diagnosis. In addition, using these two technologies simultaneously could help identify more advanced changes in the disease, even before clinical symptoms become apparent. In conclusion, combining machine learning and nanobiosensors offers a novel and efficient approach to lung cancer diagnosis that can significantly increase the accuracy of diagnosis and prognosis.
Papers List
List of archived papers
Assessment of water quality for drinking purposes in Kouhe-Sefide-Sofla area (NE Iran)
Ali Esmaeili - Masoumeh Taheri - Mohammad Hossein Mahmoudi Gharaie
Increasing resource allocation performance in DRL-based mobile edge calculations
Afshin Golchin - Vahid Sattari Naini
انقلاب شبکه های زیستی: کاربرد کامپیوترهای کوانتومی در مسیرهای متابولیکی، جهش های ژنتیکی، تعاملات زیستی
سنا محمدعلیزاده رامی
Integration of High-Definition simultaneous EEG and fNIRS recording system
Mojtaba Pourdara - Mostafa Khavanin Zadeh - Javad Safaie
Diagenesis effect on “gas-reservoir potential” of the Tirgan Formation in NE Iran - Messino section
Mohammad Hossein Tabari Abkooh - Mohammad Hossein Mahmoudi Gharaei - Mohammad Khanehbad - Reza Mousavi Harami - Behrouz Ariafar
Relation between Staphylococcus Isolated from Domestic Cats and its Owner
Nooralhuda Aljawhar
رسانندگی دینامیکی طولی گاز الکترونی دو بعدی مغناطیسی با جفت شدگی اسپین-مدار راشبا در حضور برهمکنش الکترون-الکترون
مسلم میر
Engineering Geology of Holy Karbala City
Naser Hafezi Moghaddas - Hammed Ghorbanpour
Study of CO and NO Adsorption Energy on Catalytic Converter
Somayyeh Veiskarami - Ali Nakheai Pour - Ali Mohammadi - Hossein Amini Mashhadi
چالشها و تهدیدات امنیتی در باتریهای لیتیوم-یونی و راهکارهای مقابله با آن (نقش آن در انفجار پیجرهای در لبنان)
عباس قائمی بافقی - بی بی مرضیه رضوان پناه
more
Samin Hamayesh - Version 42.7.0